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Abstract. We describe a new formulation of the functional renormalization group (RG) for interacting
fermions within a Wilsonian momentum-shell approach. We show that the Luttinger-Ward functional
is invariant under the RG transformation, and derive the infinite hierarchy of flow equations satisfied
by the two-particle-irreducible (2PI) vertices. In the one-loop approximation, this hierarchy reduces to
two equations that determine the self-energy and the 2PI two-particle vertex Φ(2). Susceptibilities are
calculated from the Bethe-Salpeter equation that relates them to Φ(2). While the one-loop approximation
breaks down at low energy in one-dimensional systems (for reasons that we discuss), it reproduces the
exact results both in the normal and ordered phases in single-channel (i.e. mean-field) theories, as shown
on the example of BCS theory. The possibility to continue the RG flow into broken-symmetry phases is an
essential feature of the 2PI RG scheme and is due to the fact that the 2PI two-particle vertex, contrary to
its 1PI counterpart, is not singular at a phase transition. Moreover, the normal phase RG equations can
be directly used to derive the Ginzburg-Landau expansion of the thermodynamic potential near a phase
transition. We discuss the implementation of the 2PI RG scheme to interacting fermion systems beyond
the examples (one-dimensional systems and BCS superconductors) considered in this paper.

PACS. 05.10.Cc Renormalization group methods – 05.30.Fk Fermion systems and electron gas –
71.10.-w Theories and models of many-electron systems

1 Introduction

The two-particle-irreducible (2PI) formalism [1–5] was
first introduced in condensed-matter physics as a means to
systematically set up self-consistent approximations that
satisfy conservation laws. It can be cast in a variational
framework where the thermodynamic potential Γ is ex-
pressed as a functional of the single-particle Green func-
tion [6]. Γ is essentially determined by the Luttinger-
Ward (LW) functional Φ [1], given by the sum of the
2PI Feynman diagrams. Φ is also the generating func-
tional of the self-energy and higher-order 2PI vertices. The
so-called Φ-derivable approximations are based on trun-
cations of the diagrammatic expansion of Φ that retain
only a finite number or a sub-series of diagrams. They
are thermodynamically consistent and satisfy conservation
laws [3,7]. While most applications of the 2PI formalism
to interacting fermion systems have been limited to the
Hartree-Fock level, recent developments, motivated by the
physics of high-temperature superconductors, have incor-
porated exchange of spin fluctuations within the Hubbard
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model [8–10]. Following general ideas put forward by
Wetterich [11], the aim of this paper is to discuss a 2PI
formulation of the renormalization group (RG) approach
to interacting fermion systems.

The RG has proven a powerful approach for study-
ing low-dimensional fermion systems, providing a sys-
tematic and unbiased method to study competing in-
stabilities in the weak-coupling limit [12–40]. One of its
main successes has been to explain how unconventional
superconductivity can occur at low temperature in sys-
tems like organic conductors [12–16] or high-temperature
superconductors [20–23,25] where the dominant electron-
electron interactions are expected to be repulsive and
favor antiferromagnetism. Although the RG can be im-
plemented in different ways, most approaches rely on the
so-called one-particle-irreducible (1PI) RG scheme or vari-
ants thereof [23,25,41]. The 1PI RG scheme is based on
an exact RG equation for the generating functional of 1PI
vertices. The existence of a Fermi surface implies that the
interaction amplitudes strongly depend on the momenta
of the interacting fermions, which leads to functional RG
equations for the 1PI vertices. For this reason, most RG
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calculations in fermion systems have been limited to one-
loop order and are thus restricted to the weak-coupling
limit. Another severe limitation of the method comes from
the difficulty to access broken-symmetry phases. Long-
range order is signaled by a diverging flow of certain 1PI
vertices and susceptibilities at a critical energy or tem-
perature scale, below which the RG equations cannot be
continued. It has been proposed to circumvent this diffi-
culty by introducing an infinitesimally small symmetry-
breaking component in the initial condition of the RG
equations [28], or combining the RG technique with a
mean-field approximation at low energy [42,43]. Alter-
natively, one can introduce a partial bosonization of the
action yielding a description in terms of both fermionic
and collective Hubbard-Stratonovich fields [11,32,38,39].
It will be interesting to further explore the applicability
of these new RG schemes in various models.

The main purpose of this paper is to show that broken-
symmetry phases can be studied with a RG scheme where
the basic quantities are the 2PI vertices rather than
their 1PI counterparts. To understand this issue in sim-
ple terms, let us consider the 1PI two-particle vertex
in the spin singlet particle-particle channel obtained by
summing the bubble diagrams (random-phase approxima-
tion (RPA)),

γ =
γ0

1 + lγ0
, (1)

where l ∼ ln(Λ0/Λ) comes from the non-interacting
particle-particle propagator. Λ0 is a high-energy cutoff
(e.g. the bandwidth), Λ an infrared cutoff which can be
identified with the temperature, and γ0 the bare (dimen-
sionless) interaction. In the RG framework, γ can be inter-
preted either as the 1PI vertex of a theory with infrared
cutoff Λ or as the effective interaction of the Wilsonian ac-
tion with ultraviolet cutoff Λ [44]. Equation (1) becomes
a differential equation (see e.g. Ref. [45]),

dγ

dl
= −γ2. (2)

For an attractive interaction γ0 < 0, a divergence occurs at
the energy (or temperature) scale Λc = Λ0 exp(1/γ0), sig-
naling the formation of Cooper pairs and the appearance
of long-range superconducting order. In the BCS (mean-
field) theory, this divergence is cured below Λc by the
presence of a finite gap in the fermion excitation spec-
trum. However, in the 1PI RG scheme, it prevents the flow
to be straightforwardly [28] continued into the broken-
symmetry phase.

Let us now reconsider equation (1) from a different
point of view. This equation can be seen as a Bethe-
Salpeter equation in the particle-particle channel with the
bare interaction γ0 as the 2PI vertex Φ(2) (the reason for
this notation will become clear in Sect. 2). Only the non-
interacting particle-particle propagator ∼ l ∼ ln(Λ/Λ0) is
scale dependent in equation (1), while the 2PI vertex Φ(2)

is invariant under the RG transformation,

dΦ(2)

dl
= 0. (3)

Within the BCS theory, the 2PI vertex Φ(2) is therefore
not sensitive to the transition into the superconducting
phase. The appearance of long-range order is expected to
induce an anomalous (i.e. symmetry violating) self-energy
below Λc. In more complicated cases, where several types
of fluctuations may compete together, we cannot exclude
the appearance of singularities in the 2PI vertices. For
instance, in a conductor close to an antiferromagnetic in-
stability, singularities in the particle-particle channel (i.e.
in the particle-particle component of Φ(2)) may be induced
by nearly divergent spin fluctuations. We shall discuss this
point in the concluding section and explain how these sin-
gularities can be controlled by a proper parameterization
of the vertex. All these considerations suggest to use a
RG scheme where the basic objects are the 2PI vertices.

The outline of the paper is as follows. In Section 2.1,
we briefly recapitulate the 2PI formalism. By means of a
Legendre transformation, we express the thermodynamic
potential (grand potential) as a functional Γ [G] of the
Green function; we then define the LW functional Φ[G]
and the 2PI vertices Φ(n). In Section 2.2, we describe the
RG procedure. We derive the differential equation satis-
fied by the thermodynamic potential and show that the
LW functional is invariant under the RG transformation.
We then deduce the infinite hierarchy of flow equations
satisfied by the 2PI vertices. A one-loop approximation is
then introduced by truncating this hierarchy and approx-
imating the 2PI three-particle vertex in terms of the 2PI
two-particle vertex Φ(2) (Sect. 2.3). We discuss the con-
nection between the one-loop equations and their coun-
terparts in the 1PI RG scheme. In Sections 2.4 and 2.5,
we give explicit expressions of the one-loop flow equations
in the normal phase and discuss the calculation of response
functions. Some of the general results of Sections 2.1–2.5
have been previously obtained by Wetterich [11], some-
times in a slightly different formulation, with a few im-
portant differences that we shall mention. In Section 2.6,
we show how the normal phase RG equations can be used
to derived the Ginzburg-Landau expansion of the ther-
modynamic potential in the vicinity of a phase transition.
This is achieved by considering the Legendre transform
F [Σ] of the LW functional Φ[G], which allows one to ex-
press the thermodynamic potential as a functional of the
self-energy. The latter is then split into a normal part and
an anomalous (i.e. symmetry violating) part which is to be
determined by minimizing the thermodynamic potential.
The last two sections are devoted to the application of the
2PI RG formalism to two different models. In Section 3,
we consider a three-dimensional fermion system with an
attractive interaction. From the one-loop approximation
restricted to the particle-particle channel, we rederive the
main results of the BCS theory (gap equation, thermody-
namic potential, and collective modes), thus showing the
ability of the 2PI RG scheme to access broken-symmetry
phases. We find that the 2PI two-particle vertex Φ(2) is in-
variant under the RG transformation, while the flow equa-
tion for the self-energy yields the BCS gap equation. In
Section 4, we study one-dimensional (1D) systems within
the g-ology framework. At one-loop order, the 2PI scheme
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compares favorably to the RG scheme at high energy, but
deteriorates at lower energy and eventually breaks down.
We identify the reason for this failure and argue that
the 2PI RG scheme can nevertheless be applied to real-
istic quasi-1D systems like the organic conductors of the
Bechgaard salt family. The conclusion is devoted to a dis-
cussion of the implementation of the 2PI RG formalism
beyond the examples considered in Sections 3 and 4.

RG approaches in the 2PI formalism have also been
discussed in high-energy physics in a field-theoretical
framework (see, for instance, Refs. [46–49]).

2 2PI RG formalism

2.1 Luttinger-Ward functional and 2PI vertices

We consider the partition function of a spin-1
2 fermion

system in the presence of external sources,

Z[J ] =
∫

D[ψ] exp
{
−S[ψ] +

1
2
ψTJψ

}
, (4)

where the action S = S0 + Sint is defined by

S0[ψ] =
1
2

∑
α,β

ψαC
−1
αβψβ,

Sint[ψ] =
1
4!

∑
α1,α2,α3,α4

Vα1α2α3α4ψα1ψα2ψα3ψα4 , (5)

with Cαβ the free propagator and Vα1α2α3α4 the to-
tally antisymmetrized interaction vertex. 1

2ψ
TJψ =

1
2

∑
α,β ψαJαβψβ describes the coupling to the external

bosonic sources Jαβ . The ψα’s are Grassmann variables
and the collective index α ≡ (r, τ, σ, c) labels the posi-
tion, imaginary time and spin projection along a given
axis, as well as other possible internal degrees of freedom.∑

α =
∫ β
0 dτ

∫
ddr

∑
σ,c where β = 1/T is the inverse

temperature and d the space dimension. c = ± is a charge
index such that

ψα =
{
ψσ(r, τ) if c = −,
ψ∗
σ(r, τ) if c = +. (6)

Since the ψ’s anticommute, both Cαβ and Jαβ can be
chosen to be antisymmetric functions: Cαβ = −Cβα and
Jαβ = −Jβα. In the following, we denote by

γ = {α, β} (7)

bosonic indices obtained from two fermionic indices α
and β.

The single-particle Green function is given by the func-
tional derivative of W [J ] = lnZ[J ],

Gγ = 〈ψαψβ〉 =
δW [J ]
δJγ

. (8)

Note that the definition of G differs by a minus sign
from the usual definition in condensed-matter physics.
The Legendre transform of W [J ] is defined by

Γ [G] = −W [J ] − 1
2
Tr(JG), (9)

where J ≡ J [G] is obtained by inverting equation (8).
To keep the notations simple, we shall denote J [G] by J
in the following. Tr denotes the trace with respect to the
fermionic indices, i.e. Tr(JG) =

∑
α,β JαβGβα. Γ [G] sat-

isfies the “equation of motion”

δΓ [G]
δGγ

= Jγ , (10)

as can be easily verified by a direct calculation [50]. It is
customary to write Γ [G] as

Γ [G] =
1
2
Tr lnG− 1

2
Tr(GC−1 − 1) + Φ[G], (11)

where the LW functional Φ[G] is the sum of 2PI vacuum
fluctuation diagrams (or vacuum fluctuation skeleton di-
agrams), i.e. diagrams that cannot be separated into two
disconnected pieces by cutting two lines.

By differentiating equation (10) with respect to the
source J and using equation (8) [50], we obtain

(
Γ (2)W (2)

)
γ1γ2

≡ 1
2

∑
γ3

Γ (2)
γ1γ3W

(2)
γ3γ2

= δα1,α2δβ1,β2 − δα1,β2δβ1,α2

≡ Iγ1γ2 (12)

where

Γ
(n)
γ1···γn =

δ(n)Γ [G]
δGγ1 · · · δGγn

,

W
(n)
γ1···γn =

δ(n)W [J ]
δJγ1 · · · δJγn

(13)

are functionals of G. Equation (12) defines a matrix mul-
tiplication with respect to the bosonic indices with I the
unit matrix. Further relations between {W (n)} and {Γ (n)}
can be obtained by taking higher-order derivatives of the
equation of motion (10).

The 2PI vertices are defined by

Φ
(n)
γ1···γn =

δ(n)Φ[G]
δGγ1 · · · δGγn

. (14)

To order V m, Φ(n) is represented by all 2PI diagrams
with n external (bosonic) legs γi and 2m−n internal lines.
These diagrams cannot be separated into two disconnected
pieces by cutting two internal lines (considering every ex-
ternal leg γi = {αi, βi} as a connected piece). The 2PI
vertices satisfy the symmetry properties

Φ
(n)
γ1···{αi,βi}···γn

= −Φ(n)
γ1···{βi,αi}···γn

,

Φ
(n)
γ1···γi···γj ···γn = Φ

(n)
γ1···γj ···γi···γn . (15)
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The equation of motion (10) can be rewritten as a Dyson
equation

G−1
γ = C−1

γ − Jγ +Σγ , (16)

with Σγ = Φ
(1)
γ the self-energy. Note that the diagram-

matic interpretation of Φ[G] as the sum of 2PI vacuum
fluctuation diagrams follows from equation (16) (see, for
instance, Ref. [51]). Similarly, the equation Γ (2)W (2) = I
can be recast in the form

W (2)
γ1γ2 = Gα1β2Gβ1α2 −Gα1α2Gβ1β2

+
1
2

∑
γ3,γ4

Gα1α3Gβ1β3Φ
(2)
γ3γ4W

(2)
γ4γ2 . (17)

Equation (17) is a Bethe-Salpeter equation relating the
two-particle Green function W (2) to the 2PI vertex Φ(2).

Equilibrium quantities are obtained for vanishing ex-
ternal sources (J = 0). The equilibrium Green function Ḡ
is determined by the stationary condition

δΓ [G]
δGγ

∣∣∣∣
Ḡ

= 0. (18)

It can be expressed in terms of the self-energy Σ̄ = Σ|Ḡ =
Φ̄(1),

Ḡ−1
γ = C−1

γ + Σ̄γ . (19)

The thermodynamic potential is given by Ω =
−β−1 lnZ[J = 0] = β−1Γ [Ḡ].

2.2 2PI RG equations

We now take the free propagator C to depend on an in-
frared cutoff Λ which suppresses the low-energy degrees of
freedom (|ξk| � Λ),

C(k, iωn) = − Θk

iωn − ξk
. (20)

C(k, iωn) is the Fourier transform of C(r, τ,−; r′, τ ′,+),
which we assume to be spin-rotation invariant. ξk = εk−µ
is the dispersion of the free fermions (with µ the chemical
potential), and ωn a fermionic Matsubara frequency. Θk is
a cutoff function such that Θk|Λ=0 = 1 and Θk|Λ=Λ0 = 0,
where Λ0 = maxk |ξk|. Physical quantities are obtained
for Λ = 0, when all degrees of freedom are included in the
partition function. W [J ] and its Legendre transform Γ [G]
now depend on Λ and satisfy flow equations as the cutoff Λ
is varied between Λ0 and 0.

From the definition of Γ [G] (Eq. (9)), we deduce

d

dl
Γ [G] = − ∂

∂l
W [J ] − 1

2

∑
γ

dJγ
dl

δW [J ]
δJγ

− 1
2
Tr
(
dJ

dl
G

)

= − ∂

∂l
W [J ], (21)

where l can be either Λ or a function of Λ, e.g. l =
ln(Λ0/Λ). Recall that J depends on G via equation (8)

and is therefore a function of l. ∂W [J ]/∂l denotes the vari-
ation of W [J ] = lnZ[J ] which follows from the explicit Λ
dependence of the propagator C,

∂

∂l
W [J ] =

1
Z[J ]

∫
D[ψ]

(
−1

2
ψT Ċ−1ψ

)
e−S[ψ]+ 1

2ψ
T Jψ

= −1
2

∑
α,β

Ċ−1
αβ 〈ψαψβ〉

=
1
2
Tr(Ċ−1G), (22)

where the dot denotes a derivation with respect to l. Equa-
tions (21, 22) imply

d

dl
Γ [G] = −1

2
Tr(Ċ−1G), (23)

and, using equation (11),

d

dl
Φ[G] = 0. (24)

The LW functional is invariant under the RG transforma-
tion. It is therefore a “universal” functional independent
of the free propagator C [52]. This property has a simple
diagrammatic interpretation. Being the sum of the 2PI
graphs (with the internal lines corresponding to the vari-
able G), Φ[G] depends on the interaction vertex V , but
not on the non-interacting (Λ-dependent) propagator C.

The thermodynamic potential satisfies the RG
equation

Ω̇ =
1
β

d

dl

(
Γ [G]

∣∣∣
Ḡ

)

=
1
β

(
d

dl
Γ [G]

)
Ḡ

+
1
2β

∑
γ

δΓ [G]
δGγ

∣∣∣∣
Ḡ

˙̄Gγ

= − 1
2β

Tr(Ċ−1Ḡ), (25)

where the last line is obtained using equations (23)
and (18).

Since Φ[G] is invariant under the RG transformation,
the flow of the 2PI vertices Φ̄(n) = Φ(n)|Ḡ is entirely due
to the flow of Ḡ,

˙̄Φ(n)
γ1···γn =

d

dl

(
δ(n)Φ[G]

δGγ1 · · · δGγn

∣∣∣∣
Ḡ

)

=
1
2

∑
γ

δ(n+1)Φ[G]
δGγ1 · · · δGγnδGγ

∣∣∣∣
Ḡ

d

dl
Ḡγ

=
1
2

∑
γ

Φ̄
(n+1)
γ1···γnγ

˙̄Gγ . (26)

We thus obtain an infinite hierarchy of flow equations for
the 2PI vertices (Fig. 1). In all Feynman diagrams shown
in this paper, a pair of neighboring external legs corre-
sponds to a bosonic index γi = {αi, βi}. We shall always
represent the 2PI two-particle vertex Φ̄

(2)
γ1γ2 with the two
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Fig. 1. Diagrammatic representation of the hierarchy (26) of

flow equations satisfied by the 2PI vertices Φ̄
(n)
γ1···γn . Derivation

with respect to l are indicated by dots (vertices) and slashed
lines (propagators). A pair of neighboring external legs corre-
sponds to γi = {αi, βi}.

external legs γ1 = {α1, β1} (γ2 = {α2, β2}) on the left
(right) hand side of the vertex: Φ̄(2)

γ1γ2 is 2PI as seen from
left to right.

Equations (25, 26) should be supplemented with the
initial values of the thermodynamic potential and the 2PI
vertices at Λ = Λ0. Since the cutoff function Θk is chosen
such that C|Λ0 = 0, we easily deduce from the diagram-
matic expansion of the LW functional that Σ̄|Λ0 = 0 (i.e.
Ḡ|Λ0 = 0), Φ̄(2)|Λ0 = V , and Φ̄(n)|Λ0 = 0 for n ≥ 3.
Using equation (11), we also obtain Ω|Λ0 = Ω0|Λ0 where
Ω0 = (2β)−1Tr lnC is the non-interacting thermodynamic
potential obtained from the action S0. To avoid comput-
ing Ω0, we shall always calculate ∆Ω = Ω −Ω0.

For practical calculations, one has to truncate the hi-
erarchy of flow equations (26) by retaining a finite number
of low-order vertices. The simplest non-trivial truncation
is discussed in the next section. Unless mentioned other-
wise, we now drop the “bar” above Green functions and
vertices since we shall only consider the case J = 0.

2.3 One-loop RG equations

2.3.1 Flow equations for the 2PI vertices

One-loop RG equations are obtained by neglecting Φ(n)

for n ≥ 4. This reduces the hierarchy of equations (26) to

Σ̇γ1 =
1
2

∑
γ2

Φ(2)
γ1γ2Ġγ2 ,

Φ̇(2)
γ1γ2 =

1
2

∑
γ3

Φ(3)
γ1γ2γ3Ġγ3 . (27)

In order to close this system of equations, we need an
approximate expression of Φ(3) in terms of Φ(2) and Σ.
Let us start with the second-order contribution to the LW
functional,

Φ[G] = − 1
48

∑
γ1,γ2γ3,γ4

Vα1β3α4β2Vα3β1α2β4Gγ1Gγ2Gγ3Gγ4 .

(28)

Fig. 2. Diagrammatic representation of Φ(3) as a function of
Φ(2) within the one-loop approximation. Φ(2), shown as a black
dot, is 2PI as seen from left to right. Signs and symmetry
factors are not indicated.

By taking the third-order functional derivative with re-
spect to G, we obtain

Φ(3)
γ1γ2γ3 = −1

2

∑
γ4

Gγ4 [Vα1α3α2α4Vβ1β3β2β4

−Vα1α3β2α4Vβ1β3α2β4 + Vα1β4β2α3Vβ1α4α2β3

−Vα1β4α2α3Vβ1α4β2β3 − (α3 ↔ β3)]. (29)

Replacing V by Φ(2) in equation (29) [11], we obtain the
one-loop approximation of Φ(3),

Φ(3)
γ1γ2γ3

∣∣∣
1 loop

= −1
2

∑
γ4

Gγ4
[
Φ(2)
α1α3α2α4

Φ
(2)
β1β3β2β4

− Φ
(2)
α1α3β2α4

Φ
(2)
β1β3α2β4

+ Φ
(2)
α1β4β2α3

Φ
(2)
β1α4α2β3

− Φ
(2)
α1β4α2α3

Φ
(2)
β1α4β2β3

− (α3 ↔ β3)
]
. (30)

By working out the symmetry factors of various diagram-
matic contributions to Φ(2) and Φ(3), one can convince
oneself that the overall factor −1/2 in equation (29) re-
mains unchanged when V is replaced by Φ(2). Φ(3)|1 loop is
shown diagrammatically in Figure 2.

Diagrams contributing to Φ[G], Σ, Φ(2) and Φ(3) up to
third order in the bare interaction amplitude V are shown
in Figure 3. The O(V 2) contribution to Φ(3) is included
in the one-loop approximation, but among the three di-
agrammatic contributions to order V 3 only the first one
is retained. The other two are not of the form (30); the
second one involves a two-particle-reducible two-particle
vertex, while the third one is clearly not of the required
type. Thus, a given diagram contributing to the LW func-
tional will generate diagrams for Φ(3) which may or may
not be included in the one-loop approximation. The lat-
ter is therefore not a Φ-derivable approximation as it is
not based on a truncation of the LW functional. A de-
tailed study of conservation laws and Ward identities in
the 2PI RG scheme is beyond the scope of this work and
remains to be done.

It should also be noticed that the one-loop approx-
imation, like any approximation of the 2PI vertex Φ(2),
leads to a violation of the crossing symmetries of the
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Fig. 3. Diagrams contributing to Φ[G], Σγ1 , Φ
(2)
γ1γ2 and Φ

(3)
γ1γ2γ3

up to third order in the bare interaction vertex V (shown as a
(small) black dot). Diagrams obtained by exchanging external
legs (αi ↔ βi) are not shown.

two-particle Green function W (2) (e.g. W
(2)
α1β1α2β2

�=
−W (2)

α1α2β1β2
) and the 1PI two-particle vertex.

From equations (27, 30), we finally obtain the one-loop
RG equations

Σ̇γ1 =
1
2

∑
γ2

Φ(2)
γ1γ2Ġγ2 ,

Φ̇(2)
γ1γ2 =

1
2

∑
γ3,γ4

(Ġγ3Gγ4 +Gγ3Ġγ4)

×[Φ(2)
α1α3α4β2

Φ
(2)
β1β3β4α2

− Φ(2)
α1α3α4α2

Φ
(2)
β1β3β4β2

]
.

(31)

Equations (31) are shown diagrammatically in Figure 4.
There are two differences with respect to the one-loop
RG equations obtained within the 1PI RG scheme [23,25]:
(i) the flow equation for the self-energy involves the 2PI
two-particle vertex and the derivative Ġ of the Green func-
tion instead of the 1PI vertex and the “single-scale propa-
gator” S = −GĊ−1G; (ii) the one-loop contribution which
would give a two-particle-reducible contribution to Φ(2) is
absent.

The procedure we have followed to obtain the one-
loop RG equation is not unique. Owing to the anti-
symmetry of V , one could write −Vα1β3α4β2Vα3β4α2β1 or
Vα4β3α1β2Vα3β4α2β1 instead of Vα1β3α4β2Vα3β1α2β4 in equa-
tion (28). This explains while the one-loop RG equation
obtained in reference [11],

Φ̇(2)
γ1γ2 =

∑
γ3,γ4

Ġγ3Gγ4
[
Φ

(2)
α4α3α1β2

Φ
(2)
β4β3β1α2

− Φ(2)
α4α3α1α2

Φ
(2)
β4β3β1β2

]
, (32)

Fig. 4. One-loop flow equations for Σγ and Φ
(2)
γ1γ2 . Here and

in the following figures, diagrams obtained by exchanging the
slashed and non-slashed lines in the one-loop diagrams con-
tributing to Φ̇(2) are not shown.

differs from ours. This equation can be represented dia-
grammatic as in Figure 4, but with the vertices Φ(2) in
the one-loop corrections being 2PI as seen from top to
bottom. Equations (31, 32) lead to different diagram re-
summations. While the two O(V 3) contributions to Φ(2)

in Figure 3 are generated by the equations (31), the first
one is not if one uses equation (32). More generally, sim-
ilar diagrams with an arbitrary number of loops are not
included in equation (32). These diagrams play a crucial
role in most applications of the RG approach to interact-
ing fermion systems. For instance, they describe the ex-
change of spin fluctuations in a conductor with short-range
antiferromagnetic order and may lead to d-wave or other
types of unconventional superconductivity. For this rea-
son, we do not expect the one-loop approximation based
on equation (32) to give reliable results.

2.3.2 Relation to the 1PI RG scheme

In this section we show how, starting from equations (31),
we can reproduce the one-loop RG equations for the
1PI two-particle vertex γ(4) obtained within the 1PI RG
scheme. γ(4) is defined by

G(4)
c,γ1γ2 = −

∑
γ3,γ4

Gα1α3Gβ1β3Gα2α4Gβ2β4γ
(4)
γ3γ4 , (33)

where

G(4)
c,γ1γ2 = 〈ψα1ψβ1ψα2ψβ2〉 −Gα1β1Gα2β2

+Gα1α2Gβ1β2 −Gα1β2Gβ1α2

= W (2)
γ1γ2 −Gα1β2Gβ1α2 +Gα1α2Gβ1β2 (34)

is the (fully) connected two-particle Green function. The
Bethe-Salpeter equation (17) implies that G(4)

c satisfies

1
2

∑
γ4

[
Iγ1γ4 +

1
2

∑
γ3

Πγ1γ3Φ
(2)
γ3γ4

]
G(4)
c,γ4γ2 =

− 1
4

∑
γ3,γ4

Πγ1γ3Φ
(2)
γ3γ4Πγ4γ2 , (35)

where
Πγ1γ2 = Gα1β2Gβ1α2 −Gα1α2Gβ1β2 . (36)
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In matrix form, equations (33, 35) read

G(4)
c = −Πγ(4)Π,(

I +ΠΦ(2)
)
G(4)
c = −ΠΦ(2)Π. (37)

We therefore obtain

γ(4) = Φ(2)
(
I +ΠΦ(2)

)−1
,

Φ(2) = γ(4)
(
I −Πγ(4)

)−1
. (38)

From these two equations, we deduce the following flow
equation for the 1PI vertex γ(4),

γ̇(4) = −γ(4)Π̇γ(4) + γ(4)
(
Φ(2)

)−1
Φ̇(2)

(
Φ(2)

)−1
γ(4)

= −γ(4)Π̇γ(4) +
(
I − γ(4)Π

)
Φ̇(2)

(
I −Πγ(4)

)
. (39)

We can now reproduce the one-loop RG equations de-
rived within the 1PI RG scheme by expanding the rhs
of equation (39) to second order in γ(4). Since Φ(2) =
γ(4)+O[(γ(4))2] and Φ̇(2) = O[(Φ(2))2], equation (39) gives
γ̇(4) = −γ(4)Π̇γ(4) + Φ̇(2) where, to order (γ(4))2, Φ̇(2) is
given by equation (31) with Φ(2) replaced by γ(4) in the
rhs. This eventually gives

γ̇(4)
γ1γ2 = −1

2

∑
γ3,γ4

(
Ġα3β4Gβ3α4 +Gα3β4Ġβ3α4

)

× [γ(4)
α1β1α3β3

γ
(4)
α4β4α2β2

− γ
(4)
α1α3β3β2

γ
(4)
β1β4α4α2

+ γ
(4)
α1α3β3α2

γ
(4)
β1β4α4β2

]
. (40)

To lowest order in γ(4), the flow equation (31) for the self-
energy becomes

Σ̇γ1 =
1
2

∑
γ2

γ(4)
γ1γ2Ġγ2 . (41)

Equations (40, 41) agrees with the equations derived
within the 1PI RG scheme [23,25] with the “single-scale
propagator” S = −GĊ−1G replaced by Ġ.

2.4 One-loop RG equations in the normal phase

In this section, we consider the one-loop RG equations in
the absence of broken symmetry. We denote the position,
time and spin indices by X so that α = (X, c), ψ(X+) =
ψ∗(X), ψ(X−) = ψ(X), and

∫
dX =

∫ β
0 dτ

∫
ddr

∑
σ. The

single-particle Green function is then given by

G(X1−, X2+) = 〈ψ(X1)ψ∗(X2)〉 ≡ G(X1, X2), (42)

with G(X1+, X2−) = −G(X2, X1). G(X1c,X2c) vanishes
in the normal phase. G satisfies the Dyson equation

G(X1, X2) = C(X1, X2)

−
∫
dX3dX4C(X1, X3)Σ(X3, X4)G(X4, X2) (43)

with
Σ(X1, X2) = Σ(X1+, X2−) (44)

the self-energy. In the normal phase, the 2PI two-particle
vertex Φ(2)(X1c1, X2c2, X3c3, X4c4) vanishes if

∑
i ci �= 0.

Distinguishing between the particle-particle (pp) and
particle-hole (ph) channels, we introduce

Φ(2)
pp (X1, X2, X3, X4) = Φ(2)(X1+, X2+, X3−, X4−),

Φ
(2)
ph (X1, X2, X3, X4) = Φ(2)(X1+, X2−, X3+, X4−).

(45)

Note that in equations (45), we have singled out one of the
two ph channels. The 2PI vertex in the other ph channel
is related to Φ(2)

ph by

Φ(2)(X1+, X2−, X3−, X4+) = −Φ(2)
ph (X1, X2, X4, X3).

(46)
Since the one-loop approximation conserves the cross-
ing symmetry Φ

(2)
γ1{α2β2} = −Φ(2)

γ1{β2α2} (as obvious from
Fig. 4), it is possible to consider a single ph channel. The
symmetry properties of Φ(2)

γ1γ2 (Eqs. (15)) imply

Φ(2)
pp (X1, X2, X3, X4) = −Φ(2)

pp (X2, X1, X3, X4)

= −Φ(2)
pp (X1, X2, X4, X3),

Φ
(2)
ph (X1, X2, X3, X4) = Φ

(2)
ph (X3, X4, X1, X2). (47)

The RG equation for the self-energy can be written as

Σ̇(X1, X2) =
1
2

∑
c=±

∫
dX3dX4Ġ(X3c,X4c̄)

×Φ(2)(X1+, X2−, X3c,X4c̄)

= −
∫
dX3dX4Ġ(X4, X3)

×Φ(2)
ph (X1, X2, X3, X4), (48)

where c̄ = −c. A similar calculation for the two-particle
vertices Φ(2)

pp and Φ(2)
ph yields

Φ̇(2)
pp (Xi) = −1

2

∫
dX ′

1dX
′
2dX

′
3dX

′
4

[
G(X ′

2, X
′
1)Ġ(X ′

3, X
′
4)

+ (G↔ Ġ)
][
Φ(2)

pp (X1, X
′
1, X

′
3, X4)Φ

(2)
ph (X2, X

′
2, X

′
4, X3)

+Φ(2)
ph (X1, X

′
2, X

′
4, X4)Φ(2)

pp (X2, X
′
1, X

′
3, X3)−(X3 ↔ X4)

]
,

Φ̇
(2)
ph (Xi) = −1

2

∫
dX ′

1dX
′
2dX

′
3dX

′
4

[
G(X ′

2, X
′
1)Ġ(X ′

3, X
′
4)

+ (G↔ Ġ)
][
Φ(2)

pp (X1, X
′
1, X

′
3, X4)Φ(2)

pp (X ′
4, X3, X2, X

′
2)

+ Φ
(2)
ph (X1, X

′
2, X

′
4, X4)Φ

(2)
ph (X ′

1, X2, X3, X
′
3)

+ Φ
(2)
ph (X1, X

′
2, X3, X

′
3)Φ

(2)
ph (X ′

1, X2, X
′
4, X4)

]
, (49)
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Fig. 5. One-loop RG equations for Σ (a), Φ
(2)
pp (b) and Φ

(2)
ph

(c) in the normal phase.

where we use the short-hand notation Φ(2)(Xi) =
Φ(2)(X1, X2, X3, X4). Equations (49) are shown diagram-
matically in Figure 5.

In spin-rotation invariant systems, it is convenient to
write Φ(2)

pp and Φ(2)
ph in the triplet/singlet and charge/spin

basis, respectively,

Φ(2)
pp,σi

(xi) = Φ
(2)
t (xi)Iσ1σ2

σ3σ4
+ Φ(2)

s (xi)T σ1σ2
σ3σ4

,

Φ
(2)
ph,σi

(xi) = Φ
(2)
ch (xi)δσ1,σ2δσ3,σ4 + Φ(2)

sp (xi)σσ1,σ2 · σσ3,σ4 ,

(50)

(X = (x, σ), x = (r, τ)), where

Iσ1σ2
σ3σ4

=
1
2
(
δσ1,σ4δσ2,σ3 + δσ1,σ3δσ2,σ4

)
,

T σ1σ2
σ3σ4

=
1
2
(
δσ1,σ4δσ2,σ3 − δσ1,σ3δσ2,σ4

)
, (51)

and σ = (σx, σy, σz) stands for the Pauli matrices. From
equations (47), we deduce the following symmetry prop-
erties

Φ
(2)
t (x1, x2, x3, x4) = −Φ(2)

t (x2, x1, x3, x4)

= −Φ(2)
t (x1, x2, x4, x3),

Φ(2)
s (x1, x2, x3, x4) = Φ(2)

s (x2, x1, x3, x4)

= Φ(2)
s (x1, x2, x4, x3),

Φ
(2)
ch,sp(x1, x2, x3, x4) = Φ

(2)
ch,sp(x3, x4, x1, x2). (52)

Performing the sum over spin indices in equations (48, 49),
we obtain the flow equations satisfied by Σ, Φ

(2)
t,s

and Φ(2)
ch,sp,

Σ̇(x1, x2) = −2
∫
dx3dx4Ġ(x4, x3)Φ

(2)
ch (x1, x2, x3, x4),

(53)

Φ̇
(2)
t (xi) = −1

2

∫
dx′1dx

′
2dx

′
3dx

′
4B(x′2, x

′
1, x

′
3, x

′
4)

×
[(
Φ

(2)
t (x1, x

′
1, x

′
3, x4)Φ

(2)
ch (x2, x

′
2, x

′
4, x3)

+2Φ(2)
t Φ(2)

sp + Φ(2)
s Φ(2)

sp

)

+
(
Φ

(2)
ch (x1, x

′
2, x

′
4, x4)Φ

(2)
t (x2, x

′
1, x

′
3, x3)

+2Φ(2)
sp Φ

(2)
t + Φ(2)

sp Φ
(2)
s

)
− (x3 ↔ x4)

]
,

Φ̇(2)
s (xi) = −1

2

∫
dx′1dx

′
2dx

′
3dx

′
4B(x′2, x

′
1, x

′
3, x

′
4)

×
[(
Φ(2)

s (x1, x
′
1, x

′
3, x4)Φ

(2)
ch (x2, x

′
2, x

′
4, x3)

+3Φ(2)
t Φ(2)

sp

)

+
(
Φ

(2)
ch (x1, x

′
2, x

′
4, x4)Φ(2)

s (x2, x
′
1, x

′
3, x3)

+3Φ(2)
sp Φ

(2)
t

)
+ (x3 ↔ x4)

]
,

Φ̇
(2)
ch (xi) = −1

2

∫
dx′1dx

′
2dx

′
3dx

′
4B(x′2, x

′
1, x

′
3, x

′
4)

×
[(

3
4
Φ

(2)
t (x1, x

′
1, x

′
3, x4)Φ

(2)
t (x′4, x3, x2, x

′
2)

+
1
4
Φ(2)

s Φ(2)
s

)

+
(
Φ

(2)
ch (x1, x

′
2, x

′
4, x4)Φ

(2)
ch (x′1, x2, x3, x

′
3)

+3Φ(2)
sp Φ

(2)
sp

)

+
(
Φ

(2)
ch (x1, x

′
2, x3, x

′
3)Φ

(2)
ch (x′1, x2, x

′
4, x4)

+3Φ(2)
sp Φ

(2)
sp

)]
,

Φ̇(2)
sp (xi) = −1

2

∫
dx′1dx

′
2dx

′
3dx

′
4B(x′2, x

′
1, x

′
3, x

′
4)

×
[(

1
2
Φ

(2)
t (x1, x

′
1, x

′
3, x4)Φ

(2)
t (x′4, x3, x2, x

′
2)

+
1
4
Φ

(2)
t Φ(2)

s +
1
4
Φ(2)

s Φ
(2)
t

)

+
(
Φ

(2)
ch (x1, x

′
2, x

′
4, x4)Φ(2)

sp (x′1, x2, x3, x
′
3)

+Φ(2)
sp Φ

(2)
ch + 2Φ(2)

sp Φ
(2)
sp

)

+
(
Φ

(2)
ch (x1, x

′
2, x3, x

′
3)Φ

(2)
sp (x′1, x2, x

′
4, x4)

+Φ(2)
sp Φ

(2)
ch − 2Φ(2)

sp Φ
(2)
sp

)]
, (54)

where

B(x1, x2, x3, x4) = G(x1, x2)Ġ(x3, x4) + (G↔ Ġ). (55)

Due to spin-rotation invariance, the single-particle Green
function Gσ1σ2(x1, x2) = δσ1,σ2G(x1, x2) and the self-
energy Σσ1σ2(x1, x2) = δσ1,σ2Σ(x1, x2). In equations (54),
we have grouped inside parenthesis terms with identical
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dependences on the variables xi, x′i and thus avoided un-
necessary repetitions of the latter.

2.5 Response functions in the normal phase

Once we have solved the RG equations (53, 54) and de-
termined the self-energy Σ and the 2PI vertex Φ(2), we
can obtain the two-particle Green functions W (2) and the
response functions from the Bethe-Salpeter equation (17).

We define triplet- and singlet-pairing fields, and
charge- and spin-density fields by

Oνt (x1, x2) =

⎧⎪⎨
⎪⎩
ψ↑(x1)ψ↑(x2) if ν = 1,
1√
2

∑
σ ψσ(x1)ψσ̄(x2) if ν = 0,

ψ↓(x1)ψ↓(x2) if ν = −1,

Os(x1, x2) =
1√
2

∑
σ

σψσ(x1)ψσ̄(x2),

ρ(x1, x2) =
∑
σ

ψ∗
σ(x1)ψσ(x2),

S(x1, x2) =
∑
σ1,σ2

ψ∗
σ1

(x1)σσ1,σ2ψσ2(x2), (56)

(σ̄ = −σ), and the corresponding response functions

χt(xi) = 〈Oνt (x1, x2)Oν∗t (x4, x3)〉

=

⎧⎪⎨
⎪⎩
W

(2)
pp,↑↑↑↑(xi) if ν = 1,

1
2

∑
σ1,σ3

W
(2)
pp,σ1σ̄1σ3σ̄3

(xi) if ν = 0,
W

(2)
pp,↓↓↓↓(xi) if ν = −1,

χs(xi) = 〈Os(x1, x2)O∗
s (x4, x3)〉

=
1
2

∑
σ1,σ3

σ1σ̄3W
(2)
pp,σ1σ̄1σ3σ̄3

(xi),

χch(xi) = 〈ρ(x1, x2)ρ(x3, x4)〉
=
∑
σ1,σ3

W
(2)
ph,σ1σ1σ3σ3

(x2, x1, x4, x3),

χsp(xi) = 〈Sν(x1, x2)Sν(x3, x4)〉
=

∑
σ1,σ2,σ3,σ4

σνσ1,σ2
σνσ3,σ4

×W (2)
ph,σ2σ1σ4σ3

(x2, x1, x4, x3), (57)

where W
(2)
pp,σi(xi) = W

(2)
σi (x1−, x2−, x3+, x4+) and

W
(2)
ph,σi

(xi) = W
(2)
σi (x1−, x2+, x3−, x4+) are the two-

particle Green functions in the pp and ph channels, re-
spectively. They satisfy the Bethe-Salpeter equations (see
Eq. (17))

W (2)
pp,σi

(xi) = δσ1,σ4δσ2,σ3G(x1, x4)G(x2, x3)

− δσ1,σ3δσ2,σ4G(x1, x3)G(x2, x4)

+
1
2

∑
σ,σ′

∫
dx′1dx

′
2dx

′
3dx

′
4G(x1, x

′
1)G(x2, x

′
2)

× Φ
(2)
pp,σ1σ2σσ′ (x′1, x

′
2, x

′
3, x

′
4)W

(2)
pp,σσ′σ3σ4

(x′3, x
′
4, x3, x4),

W
(2)
ph,σi

(xi) = −δσ1,σ4δσ2,σ3G(x1, x4)G(x3, x2)

+
∑
σ,σ′

∫
dx′1dx

′
2dx

′
3dx

′
4G(x1, x

′
1)G(x′2, x2)

× Φ
(2)
ph,σ1σ2σσ′ (x′1, x

′
2, x

′
3, x

′
4)W

(2)
ph,σ′σσ3σ4

(x′4, x
′
3, x3, x4).

(58)

From equations (58) we deduce

χµ=t,s(xi) = G(x1, x4)G(x2, x3) ∓G(x1, x3)G(x2, x4)

− 1
2

∫
dx′1dx

′
2dx

′
3dx

′
4G(x1, x

′
1)G(x2, x

′
2)

× Φ(2)
µ (x′1, x

′
2, x

′
3, x

′
4)χµ(x

′
4, x

′
3, x3, x4),

χµ=ch,sp(xi) = −2G(x4, x1)G(x2, x3)

+ 2
∫
dx′1dx

′
2dx

′
3dx

′
4G(x2, x

′
1)G(x′2, x1)

× Φ(2)
µ (x′1, x

′
2, x

′
3, x

′
4)χµ(x

′
3, x

′
4, x3, x4).

(59)

Equations (59) enable ones to determine the response
functions from the knowledge of the single-particle Green
function G and the 2PI vertex Φ(2).

In many cases, useful information can also be drawn
from the 1PI two-particle vertex γ(4). Rewriting the rela-
tion (38) between γ(4) and Φ(2) as

γ(4)
γ1γ2 = Φ(2)

γ1γ2 −
1
2

∑
γ3γ4

Φ(2)
γ1γ3Gα3β4Gβ3α4γ

(4)
γ4γ2 , (60)

and considering this equation in the pp and ph channels,
we obtain

γ
(4)
µ=t,s(xi) = Φ(2)

µ (xi) − 1
2

∫
dx′1dx

′
2dx

′
3dx

′
4

×Φ(2)
µ (x1, x2, x

′
1, x

′
2)G(x′1, x

′
3)G(x′2, x

′
4)

×γ(4)
µ (x′4, x

′
3, x3, x4),

γ
(4)
µ=ch,sp(xi) = Φ(2)

µ (xi) + 2
∫
dx′1dx

′
2dx

′
3dx

′
4

×Φ(2)
µ (x1, x2, x

′
1, x

′
2)G(x′3, x

′
1)G(x′2, x

′
4)

×γ(4)
µ (x′4, x

′
3, x3, x4). (61)

2.6 Ginzburg-Landau expansion

An essential feature of the 2PI scheme is the possibility to
continue the RG flow in a broken-symmetry phase. This
will be illustrated in the next section in the framework of
the BCS theory, and further discussed in the concluding
section. As a byproduct, one can also derive the Ginzburg-
Landau expansion of the thermodynamical potential in
the vicinity of a phase transition. The interest of such an
approach is that only the solution of the RG equations
with no symmetry breaking is necessary. When several
instabilities compete at low temperature, the derivation of
the Ginzburg-Landau expansion is expected to be much
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simpler than the full solution of the RG equations in the
broken-symmetry phase.

We introduce the Legendre transform F [Σ] of the LW
functional Φ[G],

F [Σ] = Φ[G] +
1
2
Tr(GΣ), (62)

where G ≡ G[Σ] is a functional of Σ obtained by inverting
Σγ = δΦ[G]/δGγ . Here and in the following, we assume
vanishing external sources (J = 0), and denote Ḡ, Σ̄ by
G, Σ, etc. F [Σ] satisfies

δF [Σ]
δΣγ

= −Gγ . (63)

The functional F [Σ] allows us to rewrite Γ [G] as a func-
tional of the self-energy [53],

Γ [Σ] = −1
2
Tr ln(C−1 +Σ) +

1
2
Tr(GΣ) + Φ[G]

= −1
2
Tr ln(C−1 +Σ) + F [Σ], (64)

which is stationary at the equilibrium self-energy Σ ≡ Σ̄,

δΓ [Σ]
δΣγ

= 0. (65)

We now write the self-energy Σ = ΣN + ∆ as the sum
of a normal part ΣN and an anomalous part ∆ which
violates some symmetries of the normal phase. ∆ is an
order parameter for the phase transition. It can include
different kinds of symmetry breaking, such as antiferro-
magnetism and superconductivity. If we are able to solve
the flow equations in the normal phase, i.e. fixing ∆ = 0,
we can consider Γ [∆] ≡ Γ [ΣN +∆] as a functional of the
(unknown) anomalous self-energy ∆. The latter is then
determined from the stationary condition (65),

δΓ [∆]
δ∆γ

= 0. (66)

A crucial point here is that the 2PI flow equations with
∆ = 0 can be continued below the actual phase transition
temperature Tc, since the 2PI vertices do not become sin-
gular at the transition. The functional Γ [∆] can therefore
be determined below Tc, where the stationary value of ∆
(Eq. (66)) is finite.

In the vicinity of the phase transition, where ∆ is
small, we expand Γ [∆] to fourth order,

Γ [∆] = ΓN +
1
4
Tr(GN∆)2 +

1
2!

1
22

∑
γ1,γ2

F (2)
γ1γ2∆γ1∆γ2

−1
6
Tr(GN∆)3 +

1
3!

1
23

∑
γ1,γ2,γ3

F (3)
γ1γ2γ3∆γ1∆γ2∆γ3

+
1
8
Tr(GN∆)4 +

1
4!

1
24

∑
γ1,γ2,γ3,γ4

F (4)
γ1γ2γ3γ4

×∆γ1∆γ2∆γ3∆γ4 , (67)

where β−1ΓN = β−1Γ [ΣN ] = ΩN is the thermodynamic
potential and GN the Green function in the normal phase,
and

F
(n)
γ1···γn =

δ(n)F [Σ]
δΣγ1 · · · δΣγn

∣∣∣∣
ΣN

. (68)

If, as in most one-loop approximations, one ignores the
normal phase self-energy (GN = C), the evaluation of
the terms Tr(GN∆)n does not raise any difficulty. The
determination of Γ [∆] then requires the calculation of the
coefficients F (n). These can be related to the 2PI vertices
Φ(n) by taking functional derivatives of equation (63) with
respect to G. The first-order derivative gives

−1
2

∑
γ3

δ(2)Φ[G]
δGγ1δGγ3

∣∣∣∣
GN

δ(2)F [Σ]
δΣγ3δΣγ2

∣∣∣∣
ΣN

= Iγ1γ2 , (69)

i.e. (
F (2)

)−1

γ1γ2
= −Φ(2)

γ1γ2 . (70)

Higher-order derivatives yield

F (3)
γ1γ2γ3 = −1

8

∑
γ′
1,γ

′
2,γ

′
3

Φ
(3)
γ′
1γ

′
2γ

′
3
F

(2)
γ′
1γ1
F

(2)
γ′
2γ2
F

(2)
γ′
3γ3
,

F (4)
γ1γ2γ3γ4 =

1
16

∑
γ′
1,γ

′
2,γ

′
3,γ

′
4

Φ
(4)
γ′
1γ

′
2γ

′
3γ

′
4
F

(2)
γ′
1γ1
F

(2)
γ′
2γ2
F

(2)
γ′
3γ3
F

(2)
γ′
4γ4

−1
8

∑
γ′
1,γ

′
2,γ

′
3

Φ
(3)
γ′
1γ

′
2γ

′
3

[
F

(3)
γ4γ′

1γ1
F

(2)
γ′
2γ2
F

(2)
γ′
3γ3

+F (2)
γ′
1γ1
F

(3)
γ4γ′

2γ2
F

(2)
γ′
3γ3

+ F
(2)
γ′
1γ1
F

(2)
γ′
2γ2
F

(3)
γ4γ′

3γ3

]
.

(71)

These equations simplify within the one-loop approxima-
tion, since Φ(n) vanishes for n ≥ 4 and Φ(3) can be ex-
pressed in terms of Φ(2). F (3) and F (4) are then essen-
tially determined by Φ(2) and F (2). Writing the equation
Φ(2)F (2) = −I in the pp and ph channels, we obtain

1
2

∫
dXdX ′Φ(2)

pp (X1, X2, X,X
′)F (2)

pp (X ′, X,X3, X4) =

−δ(X1 −X4)δ(X2 −X3) + δ(X1 −X3)δ(X2 −X4),∫
dXdX ′Φ(2)

ph (X1, X2, X,X
′)F (2)

ph (X ′, X,X3, X4) =

− δ(X1 −X4)δ(X2 −X3), (72)

where

F (2)
pp (X1, X2, X3, X4) = F (2)(X1−, X2−, X3+, X4+),

F
(2)
ph (X1, X2, X3, X4) = F (2)(X1−, X2+, X3−, X4+).

(73)



N. Dupuis: RG approach to fermion systems in the 2PI formalism 329

For a spin-rotation invariant system, we finally deduce
∫
dxdx′Φ(2)

t (x1, x2, x, x
′)F (2)

t (x′, x, x3, x4) =

−2[δ(x1 − x4)δ(x2 − x3) − δ(x1 − x3)δ(x2 − x4)],∫
dxdx′Φ(2)

s (x1, x2, x, x
′)F (2)

s (x′, x, x3, x4) =

−2[δ(x1 − x4)δ(x2 − x3) + δ(x1 − x3)δ(x2 − x4)],∫
dxdx′Φ(2)

ch (x1, x2, x, x
′)F (2)

ch (x′, x, x3, x4) =

−1
4
δ(x1 − x4)δ(x2 − x3),∫

dxdx′Φ(2)
sp (x1, x2, x, x

′)F (2)
sp (x′, x, x3, x4) =

− 1
4
δ(x1 − x4)δ(x2 − x3).

(74)

where F
(2)
t,s are the triplet and singlet parts of F

(2)
pp ,

and F
(2)
ch,sp the charge and spin parts of F (2)

ph . In the
next section, we shall use equation (67) to reproduce the
Ginzburg-Landau expansion of the thermodynamic poten-
tial of a BCS superconductor.

3 BCS theory

The aim of this section is to reproduce the main results of
the BCS theory using the 2PI RG equations. We consider
a 3D system described by the action

S =
∫
dx
∑
σ

ψ∗
σ(x)

(
∂τ − µ− ∇2

r

2m

)
ψσ(x)

+λ
∫
dxψ∗

↑(x)ψ∗
↓(x)ψ↓(x)ψ↑(x), (75)

wherem is the fermion mass, µ the chemical potential, and
λ < 0 the amplitude of the local attractive interaction.
This singular interaction is regularized by means of an
ultraviolet cutoff acting on the fermion dispersion: |ξk| <
Λ0, ξk = k2/2m− µ.

3.1 BCS gap equation

There are two equivalent ways to derive the RG equations
for the BCS theory. One can start from the one-loop equa-
tions and neglect the ph channel. Since the one-loop con-
tribution to Φ̇(2)

pp involves only the ph channel, it vanishes
in the BCS approximation, i.e.

Φ̇(2)
pp = 0. (76)

Alternatively, one can start directly from the LW func-
tional (Fig. 6)

ΦBCS[G] = λ

∫
dxG↑↓(x+, x+)G↓↑(x−, x−), (77)

Fig. 6. Luttinger-Ward functional ΦBCS[G] in the BCS theory.

where

G↑↓(x+, x′+) = 〈ψ∗
↑(x)ψ∗

↓(x′)〉,
G↓↑(x−, x′−) = 〈ψ↓(x)ψ↑(x′)〉. (78)

One then obtain Φ(3)
γ1γ2γ3 = 0, which leads to equation (76).

In the case of a local interaction, the only non-
vanishing part of Φ(2)

pp reads

Φ(2)
pp,σi

(xi) = Φ̃(2)
pp,σi

δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

Φ̃
(2)
pp,↑↓↓↑ = −Φ̃(2)

pp,↑↓↑↓ = −Φ̃(2)
pp,↓↑↓↑ = Φ̃

(2)
pp,↓↑↑↓ = λ,

(79)

i.e. Φ̃(2)
s = 2λ and Φ̃

(2)
t = 0. The self-energy has two non-

vanishing elements, Σ↑↓(x+, y+) = −Σ↓↑(y+, x+) and
Σ↓↑(x−, y−) = −Σ↑↓(y−, x−), determined by the RG
equations

Σ̇↑↓(x+, y+) = λδ(x − y)Ġ↓↑(x−, y−),

Σ̇↓↑(x−, y−) = λδ(x − y)Ġ↑↓(x+, y+). (80)

Defining the superconducting order parameter ∆ by

Σ↑↓(x+, y+) = δ(x − y)∆,

Σ↓↑(x−, y−) = δ(x − y)∆∗, (81)

the flow equation becomes

∆̇ = λĠ↓↑(x−, x−). (82)

Integrating equation (82) between Λ0 and Λ, we obtain
the gap equation

∆ =
λ

βV

∑
k

G↓↑(k−, k−), (83)

where V is the volume of the system, and k = (k, iωn)
with ωn a fermionic Matsubara frequency.

We use the standard Nambu notation, Ψ(x) =
(ψ↑(x), ψ∗

↓(x))T , to write the inverse Green function as
a 2 × 2 matrix in reciprocal space,

G−1(k) =

(
C−1(k) ∆

∆∗ −C−1(−k)

)
, (84)

where C(k) is the free propagator defined by equa-
tion (20). For intermediate calculations, it is convenient
to assume that Θk is a smooth cutoff function which does
not vanish (Θk �= 0). Final results depend only on C(k)
(and not C−1(k)) and are well defined even for a hard
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cutoff Θk = Θ(|ξk| − Λ) (Θ is the step function). Invert-
ing G−1, we obtain

Gσσ(k−, k+) = Θk
iωn + ξk
ω2
n + E2

k

,

G↑↓(k−, k−) = Θk
∆k

ω2
n + E2

k

,

G↓↑(k+, k+) = Θk
∆∗

k

ω2
n + E2

k

, (85)

where

Ek =
√
ξ2k + |∆2

k|, ∆k = ∆Θk. (86)

Using equations (85), we can rewrite the gap equa-
tion (83) as

∆ = − λ

V

∑
k

Θ2
k∆

2Ek
tanh

(
β
Ek

2

)
. (87)

When ∆ �= 0, this equation becomes

1
|λ̃| =

∫ Λ0

Λ

dξ√
ξ2 + |∆|2 tanh

(
β

2

√
ξ2 + |∆|2

)
, (88)

where we have taken Θk = Θ(|ξk| − Λ). The density of
states in the normal phase N(ξ) = 1

V

∑
k δ(ξ − ξk) has

been approximated by its value N(0) at the Fermi level,
and λ̃ = N(0)λ is a dimensionless interaction constant.
equation (88) can be solved exactly at T = 0,

|∆(T = 0)| = |∆0|
(

1 − 2Λ
|∆0|

)1/2

Θ

( |∆0|
2

− Λ

)
, (89)

assuming |∆| 
 Λ0. |∆0| = |∆|Λ=0 = 2Λ0e
1/λ̃ is the zero-

temperature BCS gap.
When ∆(T,Λ) = 0, the singlet response function

χs(x, x, y, y) defined in Section 2.5 is given by the Bethe-
Salpeter equation (59). In Fourier space,

χs(q) =
2Π−+(q)

1 + λΠ−+(q)
(90)

(q = (q, iων) with ων a bosonic Matsubara frequency),
where Π−+(q) is the Fourier transform of the pp propa-
gator

Π−+(x− y) = [C(x, y)]2. (91)

The condition for χs(q = 0) to diverge, 1+λΠ−+(q = 0) =
0, is equivalent to the linearized gap equation (Eq. (88)
with ∆→ 0+).

Figure 7 shows the superconducting order parameter
∆ and the singlet response function χs(q = 0) (in the
regime where ∆(T,Λ) = 0) at T = 0 and T = 0.9Tc
where Tc is the superconducting transition temperature.
χs diverges at the threshold value Λc(T ) of the cutoff be-
low which the gap ∆ becomes finite and reaches the BCS
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Fig. 7. Order parameter ∆ and singlet response function χs

(for ∆(T, Λ) = 0) versus Λ for T = 0 (solid lines) and T = 0.9Tc

(dashed lines).

value for Λ = 0. The transition temperature is determined
by Λc(Tc) = 0. As the 2PI RG equations determine ∆
and Φ(2), they are not plagued with divergences and can
be continued down to Λ = 0 for any temperature. Broken
symmetry is signaled by a finite value of the anomalous
self-energy ∆ below Λc(T ). The divergence of the singlet
response function χs is seen only when the 2PI vertex Φ(2)

is fed into the Bethe-Salpeter equation relating χs to Φ(2)
pp .

Note that we have picked up the nonzero solution
of (87) by hand. Alternatively – and this is how one should
proceed in more complicated situations – one can directly
solve the flow equation (82) [54],

∆̇

λ̃
=

∆√
Λ2 +∆2

tanh
(
β

2

√
Λ2 +∆2

)

− ∆̇

∫ Λ0

Λ

dξ

E
tanh

(
β

2
E

)

+ ∆̇∆2

∫ Λ0

Λ

dξ

E2

[
1
E

tanh
(
β

2
E

)
− β

2 cosh2 (βE/2)

]

(92)

(E =
√
ξ2 +∆2 and we assume the gap ∆ to be

real), together with a symmetry-breaking initial condition
∆(Λ0) = ε. For ε/∆(Λ = 0) � 10−5, the solution of (92)
cannot be distinguished from that of (88) when plotted on
the same graph. A larger value of ε leads to a smearing of
the singularity at Λc(T ).

3.2 Thermodynamic potential

We could determine the thermodynamic potential Ω =
β−1Γ directly from equation (11) using the expression (77)
of ΦBCS. To illustrate how the 2PI RG scheme works, we
shall instead use the flow equation (25) and the Ginzburg-
Landau expansion (67) of the thermodynamic potential
near a phase transition.
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3.2.1 Ground state condensation energy

The ground state condensation energy ∆Ω = Ω−Ω0 sat-
isfies the RG equation (see Eq. (25))

∆Ω̇ = − 1
2β

Tr[Ċ−1(G− C)]

= − 2
β

∑
k

Ċ−1
k [G↑↑(k−, k+) − C(k)]

= − 2
β

∑
k

|∆|2Θ̇kΘk

ω2
n + E2

k

= −|∆|2
∑
k

Θ̇kΘk

Ek
, (93)

where the last line is obtained for T = 0. A direct eval-
uation of this equation by replacing the sum over k by
an integral over ξk leads to ambiguities because of fac-
tors Θ(0). We therefore rewrite equation (93) as

∆Ω̇ = −∂̄Λ
∑
k

√
ξ2k + |∆|2Θ2

k, (94)

where ∂̄Λ denotes a derivation with respect to Λ at
fixed |∆|. The calculation is then straightforward and
yields

∆Ω̇ = −2V N(0)
[
Λ−

√
Λ2 + |∆|2

]

= −2V N(0)(2Λ− |∆0|)Θ
( |∆0|

2
− Λ

)
, (95)

where we have used equation (89). Integrating this equa-
tion between Λ0 and Λ, we finally obtain

∆Ω = −2V N(0)
( |∆0|

2
− Λ

)2

Θ

( |∆0|
2

− Λ

)
. (96)

For Λ = 0, we recover the expression of the condensation
energy ∆Ω = − 1

2V N(0)|∆2
0| in a BCS superconductor.

3.2.2 Ginzburg-Landau expansion

In the vicinity of the superconducting transition, the ther-
modynamic potential can be calculated using the general
method discussed in Section 2.6. This approach relies on
the 2PI RG equations in the normal phase (∆ = 0) contin-
ued below the actual transition temperature Tc (i.e. with
Σ = ΣN = 0 and Φ(2) = const in the BCS model). The
anomalous self-energy ∆γ1γ2 is defined by

∆σ1σ2(x1c1, x2c2) = δ(x1 − x2)δσ1,σ̄2δc1,c2
×σ1(δc1,+∆− δc1,−∆

∗). (97)

Using (97), one finds

Tr(GN∆)2 = −4|∆|2
∑
k

C(k)C(−k)

= −4V β|∆|2N(0) ln
(

2γΛ0

πT

)
,

Tr(GN∆)4 = 4|∆|4
∑
k

[C(k)C(−k)]2

= V β|∆|4 7ζ(3)N(0)
2π2T 2

1
8

∑
γ1,γ2

F (2)
γ1γ2∆γ1∆γ2 =

|∆|2
2

∫
dx1dx2F

(2)
s (x1, x1, x2, x2)

= −V β |∆|2
λ

, (98)

where γ � 1.78 is the exponential of the Euler constant
and ζ(z) the Riemann zeta function (ζ(3) � 1.2). To ob-
tain the last line, we have used the relation (74) between
Φ

(2)
s and F (2)

s and equation (79). From equations (67, 98),
we recover the Ginzburg-Landau expansion in a BCS su-
perconductor,

∆Ω

V
= |∆|2

[
1
|λ| −N(0) ln

(
2γΛ0

πT

)]
+

7ζ(3)N(0)
16π2T 2

|∆|4.
(99)

3.3 Response function and collective modes
in the superconducting phase

For Λ < Λc(T ), where ∆(T,Λ) �= 0, the singlet supercon-
ducting response function is defined by

χc1c2s (x1, x2) =
1
2

∑
σ1,σ2

σ1σ̄2

×W (2)
σ1σ̄1σ2σ̄2

(x1, c1, x1, c1, x2, c2, x2, c2).
(100)

Using the Bethe-Salpeter equation (17), we obtain

χ−+
s (q) = 2Π−+(q) − λΠ−+(q)χ−+

s (q)
−λΠ−−(q)χ++

s (q),
χ++

s (q) = 2Π++(q) − λΠ+−(q)χ++
s (q)

−λΠ++(q)χ−+
s (q), (101)

where Πc1c2(q) is the Fourier transform of

Π−+(x− y) = Π+−(y − x) = G↑↑(x, y)G↓↓(x, y),

Π−−(x− y) = −G↓↑(x−, y−)G↑↓(x−, y−),

Π++(x− y) = −G↑↓(x+, y+)G↓↑(x+, y+). (102)

Collective modes are obtained from the poles of χc1c2(q),

[1 + λΠ−+(q)][1 + λΠ+−(q)] − λ2Π++(q)Π−−(q) = 0.
(103)
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Using

Π−+(q = 0) = Π+−(q = 0)

= − 1
λ
− 1
βV

∑
k

Θ2
k|∆2

k|
(ω2
n + E2

k)2
,

Π−−(q = 0) = Π++(q = 0)∗

=
1
βV

∑
k

∆2
k

(ω2
n + E2

k)2
, (104)

one verifies that equation (103) is satisfied for q = 0
and ων = 0. For any finite value of the gap ∆ (i.e. for
Λ < Λc), we therefore obtain a gapless (Goldstone) mode
(Anderson-Bogoliubov mode [55,56]). Note that the Gold-
stone theorem is ensured by the fact that the BCS theory
is a Φ-derivable approximation.

4 One-dimensional systems

In this section, we consider a 1D system with the action
(for a review on 1D systems, see Ref. [12])

S0 = −
∑
k,r,σ

ψ∗
rσ(k)[iωn − ξr(k‖)]ψrσ(k),

Sint =
1

2βL

∑
k,k′,q

r,r′,σ,σ′

(g2δr,r′ + g1δr,r̄′)

× ψ∗
rσ(k + q)ψ∗

r̄σ′(k′ − q)ψr̄′σ′(k′)ψr′σ(k), (105)

where L is the length of the system, k = (k‖, iωn), and q =
(q‖, iων). k‖ and q‖ denote momenta, ωn and ων fermionic
and bosonic Matsubara frequencies, respectively. The in-
dex r distinguishes between right (r = +) and left (r = −)
moving fermions. ξr(k‖) = εr(k‖) − µ = vF (rk‖ − kF ) is
the dispersion law, linearized around the two Fermi points
±kF , µ being the chemical potential. The bandwidth is
2Λ0 = 2 max|ξr(k‖)|. g1 and g2 are the backward and for-
ward scattering amplitudes, respectively. We assume the
band filling to be incommensurate and neglect Umklapp
processes.

4.1 One-loop RG equations

The 2PI two-particle vertex Φ
(2)r1r2r3r4
pp,ph (Xi) now car-

ries left/right indices ri. Momentum conservation implies∑
i ri = 0. We define

ΦC
µ (xi) = Φ(2)+−−+

µ (xi), (µ = t, s),

ΦP
µ(xi) = Φ(2)+−−+

µ (xi), (µ = ch, sp),

ΦL
µ(xi) = Φ(2)++−−

µ (xi), (µ = ch, sp), (106)

where C, P, and L refer to the Cooper, Peierls, and Landau
channels according to the standard terminology used in

Fig. 8. One-loop RG equations for the 2PI vertex Φ(2) in the
Cooper (a), Peierls (b) and Landau (c) channels in a 1D sys-
tem. Solid and dashed lines indicate right- and left-moving
fermions, respectively. [In the pp loops appearing in (b) and (c),
a sum over the left/right indices is implied.]

the framework of the g-ology model [12]. In Fourier space,
we neglect the frequency dependence and approximate

ΦC
µ (k1, k2, k3, k4) � ΦC

µ (kF ,−kF ,−kF , kF ) ≡ ΦC
µ ,

ΦP
µ(k1, k2, k3, k4) � ΦP

µ(kF ,−kF ,−kF , kF ) ≡ ΦP
µ ,

ΦL
µ(k1, k2, k3, k4) � ΦL

µ(kF , kF ,−kF ,−kF ) ≡ ΦL
µ.

(107)

By scaling arguments, one can show that the dependence
of the 1PI vertex γ(4)(ki) on ωni and |ki‖|−kF is irrelevant
in the RG sense. The validity of equation (107), which as-
sumes that the 2PI vertex Φ(2) shares the same property,
will be discussed in Section 4.3. One-loop flow equations
for ΦC, ΦP and ΦL are deduced from equations (54) by
including the r index, i.e. xi → (xi, ri). Retaining only
leading logarithmic divergent loops (Parquet approxima-
tion) [12], the contribution to the self-energy vanishes and
the RG equations for the two-particle vertex read (see
Fig. 8)

Φ̇C
t = −Bph

(
ΦC

t Φ
L
ch + 2ΦC

t Φ
L
sp − ΦC

s Φ
L
sp

)
,

Φ̇C
s = −Bph

(
ΦC

s Φ
L
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t Φ
L
sp

)
,

Φ̇P
ch = −Bpp

(
ΦP

chΦ
L
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spΦ
L
sp

)
,

Φ̇P
sp = −Bpp

(
ΦP

chΦ
L
sp + ΦP

spΦ
L
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spΦ
L
sp

)
,

Φ̇L
ch = −1

2
Bph

(
3
4
ΦC

t

2
+

1
4
ΦC

s

2
+ ΦL

ch

2
+ 3ΦL

sp

2
)

−1
2
Bpp

(
ΦL

ch

2
+ 3ΦL

sp

2
+ ΦP

ch

2
+ 3ΦP

sp

2
)
,

Φ̇L
sp = −Bph

(
1
4
ΦC

t

2 − 1
4
ΦC

t Φ
C
s + ΦL

chΦ
L
sp + ΦL

sp

2
)

−Bpp

(
ΦL

chΦ
L
sp − ΦL

sp

2
+ ΦP

chΦ
P
sp − ΦP

sp

2
)
, (108)

where

Bph =
1
βL

∑
k

[G+(k)Ġ−(k −Q) + (G↔ Ġ)],

Bpp =
1
βL

∑
k

[G+(k)Ġ−(−k) + (G↔ Ġ)] (109)
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come from the ph and pp loops, and Q = (2kF , 0). The
dot denotes a derivation with respect to l = ln(Λ0/Λ). To
evaluate Bph and Bpp, we use a sharp infrared cutoff,

Gr(k) = Cr(k) = −Θ(|ξr(k‖)| − Λ)
iωn − ξr(k‖)

. (110)

This gives

Bpp = −Bph =
1

2πvF
tanh

(
β
Λ

2

)
. (111)

The initial values of the 2PI vertex Φ(2) is the bare vertex
defined by equation (105),

ΦC
t |Λ0 = −g1 + g2, Φ

C
s |Λ0 = g1 + g2,

ΦP
ch|Λ0 = g1 − g2

2
, ΦP

sp|Λ0 = −g2
2
,

ΦL
ch|Λ0 = −g1

2
+ g2, Φ

L
sp|Λ0 = −g1

2
. (112)

4.2 Response functions and 1PI vertices

The response functions in the Cooper and Peierls channels
are defined by

χC
t,s =

1
βL

∑
k,k′

χ+−−+
t,s (k,−k,−k′, k′),

χP
ch,sp =

1
βL

∑
k,k′

χ+−−+
ch,sp (k, k −Q, k′ −Q, k′). (113)

From the Bethe-Salpeter equations satisfied by χ+−−+
t,s

and χ+−−+
ch,sp (Eqs. (59) with the ri index included), we

obtain

χC
µ =

Πpp

1 +ΠppΦC
µ

,

χP
µ =

−2Πph

1 − 2ΠphΦP
µ

, (114)

where

Πpp =
1
βL

∑
k

G+(k)G−(−k)

=
1

2πvF

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
,

Πph =
1
βL

∑
k

G+(k)G−(k −Q)

= −Πpp. (115)

Similarly, for the 1PI two-particle vertex γ(4) (Eq. (61)),
we find

γC
µ =

ΦC
µ

1 +ΠppΦC
µ

,

γP
µ =

ΦP
µ

1 − 2ΠphΦP
µ

,

γL
µ = ΦL

µ. (116)

The equality between γL
µ and ΦL

µ is due to the absence
of logarithmic divergent loops in the Landau channel and
holds at the Parquet level.

In Section 2, we have shown very generally that the
RG equation for γ(4) derived within the 1PI scheme fol-
lows from the RG equation satisfied by the 2PI vertex Φ(2)

and the Bethe-Salpeter equation relating γ(4) and Φ(2). In
Appendix A, as a means to check the validity of equa-
tions (108), we recover the RG equation satisfied by γ(4)

directly from equations (108, 116).

4.3 Discussion

Figure 9 shows Φ(2), χ and γ(4) versus l = ln(Λ0/Λ)
at zero temperature for g̃1 = g̃2 = 0.2. g̃1 = g1/πvF
and g̃2 = g2/πvF are dimensionless coupling constants.
Solid lines show the results obtained within the 2PI
scheme by solving the flow equations (108) and using equa-
tions (114, 116). Dashed lines correspond to results ob-
tained within the 1PI scheme, where γ(4) and χ are di-
rectly obtained from RG equations, the 2PI vertex Φ(2)

being then deduced from the relations (116). The agree-
ment between the two schemes is excellent at high energies
(small l), but deteriorates at lower energies where, in at
least one correlation channel, the 2PI vertex Φ(2) becomes
of order one and eventually diverges. This deficiency is
not important in the 1PI scheme, as Φ(2) is usually not
considered in this scheme, but it shows that the one-loop
approximation breaks down in the 2PI scheme at low en-
ergy.

The divergence of the 2PI vertex Φ(2) in the 1PI
scheme, which correctly predicts all other physical quan-
tities, suggests that the relations (116) between 1PI and
2PI vertices may not be quite correct. Inverting equa-
tions (116) and considering the zero temperature limit,
we obtain Φ̃C

µ (l) = γ̃C
µ (l)/(1− lγ̃C

µ /2) in the Cooper chan-
nel and Φ̃P

µ(l) = γ̃P
µ (l)/(1 − lγ̃P

µ ) in the Peierls channel.
Φ̃ = Φ/πvF and γ̃ = γ/πvF are dimensionless vertices. We
conclude that the 2PI vertex Φ(2) will diverge at a finite
energy scale Λc = Λ0e

−lc whenever γ(4) is positive and
finite in the low-energy limit (l → ∞). For repulsive in-
teractions, γC

s (l) → g2−g1/2 satisfies this condition when
g2 > g1/2, which leads to the divergence of the 2PI ver-
tex ΦC

s (see Fig. 9). The unphysical divergence of the 2PI
vertex Φ(2) comes from the assumption that the 2PI vertex
is momentum independent (Eq. (107)), which results in an
artificial decoupling of energy scales between the 2PI ver-
tex and the reducible pp (or ph) propagator Πpp,ph. The
latter involves all energy scales between Λ and Λ0 whereas
the momentum-independent Φ(2) is an effective 2PI vertex
at the energy scale Λ. The Bethe-Salpeter equations (114)
and (116) are therefore expected to be less and less reliable
as the infrared cutoff Λ decreases.

These difficulties can be partially overcome by mod-
ifying the Bethe-Salpeter equation relating Φ(2) to γ(4)
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Fig. 9. 2PI vertices Φ(2) (a), response functions χ (b) and 1PI
vertices γ(4) (c) versus l = ln(Λ0/Λ) for g̃1 = g̃2 = 0.2 and
T = 0. Units are chosen such that πvF = 1. The correlation
channel is indicated in the upper left or right corner of each
graph, following the notation of the text: (C,t) = (Cooper,
triplet), etc. The solid (dashed) lines show the results obtained
from the 2PI (1PI) RG scheme. In the 1PI RG scheme, the 2PI
vertex Φ(2) (dashed lines in panel (a)) is deduced from γ(4)

using the relations (116).

and χ,

γ̃C
µ (Λ) = Φ̃C

µ (Λ) − 1
2

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
Φ̃C
µ (Λ)γ̃C

µ (Λ)

→ Φ̃C
µ (Λ) − 1

2

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
Φ̃C
µ (ξ)γ̃C

µ (Λ),

χC
µ (Λ) = Πpp(Λ) − 1

2

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
Φ̃C
µ (Λ)χC

µ (Λ)

→ Πpp(Λ) − 1
2

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
Φ̃C
µ (ξ)χC

µ (Λ),

(117)

and similar equations in the ph channel. The 2PI vertex
Φ(2) is now taken at the same energy scale than the pp or
ph propagator. We thus obtain

γC
µ =

ΦC
µ

1 + Ψ̃C
µ

2

, χC
µ =

Πpp

1 + Ψ̃C
µ

2

,

γP
µ =

ΦP
µ

1 + Ψ̃P
µ

, χP
µ =

−2Πph

1 + Ψ̃P
µ

, (118)

where

ΨC,P
µ =

∫ Λ0

Λ

dξ

ξ
tanh

(
β
ξ

2

)
ΦC,P
µ

∣∣∣
Λ=ξ

(119)

satisfies the flow equation

Ψ̇C,P
µ = tanh

(
β
Λ

2

)
ΦC,P
µ . (120)

Figure 10 shows Φ(2), χ and γ(4) obtained from equa-
tions (118) instead of equations (114, 116). The parame-
ters are the same as in Figure 9. We see that the agreement
between the 1PI and 2PI schemes, in particular for the
susceptibilities, is significantly better. It is instructive to
consider the case g1 = 0 where the 1PI vertices γC

µ and γP
µ

are fixed points of the flow equations at any order in a loop
expansion. From equations (118, 120), one then obtains
ΦC
µ = ΦC

µ (l = 0) exp(1
2 γ̃

C
µ l) and ΦP

µ = ΦP
µ(l = 0) exp(γ̃P

µ l)
at zero temperature. Depending on the sign of γµ, the
2PI vertex will either vanish or diverge exponentially in
the limit l → ∞. The unphysical divergence of the 2PI
vertex obtained earlier at a finite energy scale is now
replaced by an exponential divergence at zero energy
(Λ = Λ0e

−l → 0). This divergence follows from the co-
existence of logarithmically divergent (reducible) pp and
ph loops and weak 1PI vertices, which is made possible in
1D by the strong interferences between various correlation
channels. The 2PI flow equations give the correct quali-
tative behavior of Φ(2), but the one-loop approximation
clearly breaks down at low energy when Φ(2) becomes of
order one.

It should be noticed that if, within the 1PI scheme,
the susceptibilities were calculated from

χC
µ = Πpp −Πppγ

C
µΠpp,

χP
µ = −2Πph − 4Πphγ

P
µΠph, (121)
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Fig. 10. Same as Figure 9, but using equations (118) instead
of equations (114, 116).

with momentum independent vertices γ(4) obtained from
RG equations, similar difficulties would arise and the
correct asymptotic low-energy behavior would not be
reached. The correct result is obtained by also deriving RG
equations for the susceptibilities; in this way irreducible
and reducible pp and ph loops are considered on equal
footing. These RG equations are obtained by introducing
bosonic external sources that couple to order parameter
fields, in addition to the fermionic sources that are used
to obtain the generating functional of 1PI vertices by a
Legendre transformation [23,25].

To quantify the failure of the 2PI scheme, within the
one-loop approximation, to access the low-energy limit of
1D systems, let us consider the case of the quasi-1D or-
ganic conductors of the Bechgaard salt family. In these
systems, the bandwidth 2Λ0 � 4t‖ ∼ 12000 K is much
larger than the kinetic interchain coupling t⊥ ∼ 300 K.
For g̃1 = g̃2 = 0.2, the 2PI flow equations break down
for l ∼ 5 (Fig. 10), which corresponds to an energy or
temperature scale Λ0e

−l ∼ 40 K. For g̃1 = g̃2 = 0.4,
we find that the flow equations remain valid down to
∼ Λ0e

−3 ∼ 300 K. In both cases, these energy scales are
of the same order of magnitude or smaller than the tem-
perature Tx ∼ t⊥ ∼ 300 K at which a crossover to a 2D
regime takes place. Preliminary calculations in quasi-1D
systems indicate that the interaction strength studied in
references [15,16], namely g̃2 = 2g̃1 = 0.64 is accessible
within the 2PI scheme [57]. We thus conclude that the
2PI scheme can be used for realistic quasi-1D systems like
the Bechgaard salts.

5 Summary and conclusion

We have discussed the implementation of a Wilsonian
momentum-shell RG approach within the 2PI formalism
introduced in the 60s by Luttinger, Ward, Baym and oth-
ers [1–4]. The 2PI RG scheme yields an infinite hierar-
chy of flow equations satisfied by the 2PI vertices Φ(n).
The susceptibilities are obtained from the Bethe-Salpeter
equation that relates them to the 2PI two-particle ver-
tex Φ(2). In the normal phase, one has schematically

χpp = χ
(0)
pp − 1

2ΠppΦ
(2)
ppχpp

χph = χ
(0)
ph + 2ΠphΦ

(2)
ph χph

�

�
(RG equations)

(similar equations could be written for the 1PI ver-
tices γ(4)

pp and γ
(4)
ph ) where χ(0)

pp,ph are the susceptibilities
without vertex correction and Πpp/ph the pp or ph pair
propagator. The arrows indicate the coupling between the
pp and ph channels which is taken care of by the RG
equations satisfied by the 2PI two-particle vertices Φ(2)

pp

and Φ(2)
ph . The infinite hierarchy of RG flow equations sat-

isfied by the 2PI vertices Φ(n) should be truncated at some
order in a loop expansion. The simplest non trivial trunca-
tion, the one-loop approximation, was discussed in detail
in Section 2. As any approximation of the 2PI vertex Φ(2),
it leads to a violation of the crossing symmetries of the
two-particle Green function W (2) and the 1PI vertex γ(4).
Besides, the one-loop approximation is not a Φ-derivable
approximation, and a detailed study of conservation laws
and Ward identities remains to be done.

We have shown in Section 4 that 1D conductors are
characterized by an exponentially divergent 2PI vertex in
the zero-energy limit, a consequence of the strong inter-
ferences between correlation channels in 1D. This leads
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to a breakdown of the one-loop approximation, which is
therefore unable to access the asymptotic low-energy be-
havior of Luttinger liquids. Nevertheless, we have argued
that the 2PI scheme can be used in quasi-1D systems like
the organic conductors of the Bechgaard family where a
dimensional crossover always drives the system towards a
2D or 3D behavior at low energy.

On the other hand, the 2PI RG scheme leads to a par-
ticularly simple description of single-channel (i.e. mean-
field) theories. In mean-field theories, all the Λ dependence
comes from the two-particle-reducible part of the suscepti-
bilities (and the 1PI vertex γ(4)), while the 2PI vertex Φ(2)

is invariant under the RG transformation: Φ̇(2) = 0. The
one-loop flow equations then reduce to a single equation
that determines the (anomalous) self-energy and repro-
duces the usual mean-field gap equation (Sect. 3).

The possibility to continue the RG flow into broken-
symmetry phases is an essential feature of the 2PI RG
scheme and is due to the fact that the 2PI two-particle
vertex Φ(2), contrary to its 1PI counterpart, is not singular
at the phase transition. This property, which is obvious in
a mean-field theory, deserves some discussion in more gen-
eral cases. The interchannel coupling, even weak, is likely
to induce singularities in the 2PI vertex Φ(2), in particular
in the vicinity of a phase transition. However, these sin-
gularities can be controlled by a proper parameterization
of Φ(2). To see this, let us consider a quasi-1D conduc-
tor near a spin-density-wave (SDW) instability. The spin
susceptibility χsp(2kF , π) diverges at the SDW transition
but, as in single-channel (mean-field) theories, the irre-
ducible vertex ΦP

sp should remain finite (see Sect. 4 for the
definition of ΦP and ΦC in a (quasi-)1D system). In the
vicinity of the phase transition, nearly divergent spin fluc-
tuations strongly affect the 2PI vertex ΦC in the Cooper
channel. For the purpose of our discussion, let us assume
that ΦC is proportional to the spin susceptibility,

ΦC
µ=t,s(k⊥, q⊥ − k⊥,−k′⊥, k′⊥ + q⊥) ∝ χsp(2kF , k⊥ + k′⊥),

(122)
where we retain the k⊥ dependence of the vertex [16].
The combination of k⊥ arguments in equation (122) is
the one that appears in the Bethe-Salpeter equation de-
termining the superconducting susceptibility. Expanding
the even function χsp(2kF , q⊥) in Fourier series, we obtain

ΦC
µ (k⊥, q⊥ − k⊥,−k′⊥, k′⊥ + q⊥)

=
∞∑
n=0

a(n)
µ cos[n(k⊥ + k′⊥)]

=
∞∑
n=0

a(n)
µ [cos(nk⊥) cos(nk′⊥) − sin(nk⊥) sin(nk′⊥)],

(123)

where a(n+1)
µ a

(n)
µ < 0 and |a(n)

µ | is a decreasing function
of n. The condition |a(n)

µ | = |a(0)
µ |, i.e. a(n)

µ = (−1)na(0)
µ ,

would lead to a diverging susceptibility χsp(2kF , q⊥) ∝
δ(q⊥ − π), while |a(n+1)

µ | < |a(n)
µ | gives a broadened peak

at q⊥ = π. The proximity of the SDW transition manifests

itself by a larger and larger number of a(n)
µ coefficients with

a significant amplitude. All these coefficients should how-
ever remain bounded, with 1 ± (a(n)

µ /2)Πpp > 0, for the
system to be stable against a superconducting instability
(Πpp is the pp propagator defined in (115)). By parameter-
izing the 2PI vertex ΦC by means of the a(n)

µ coefficients,
we avoid any complication due to the diverging spin sus-
ceptibility. In practice, only a finite number of coefficients
need to be retained. The coefficients with a large value of
n, which correspond to pairing between fermions n chain
apart, do not play an important role; they cannot drive
a pairing instability – an instability with a small value of
n (n = 0, 1, 2, · · · ) will always occur first [58] – and their
influence on the ph channel is expected to be negligible.
This approximation will lead to a non essential smearing
of the singularity of ΦC

µ at k⊥ + k′⊥ = π. The argument
given here for quasi-1D systems can be made more gen-
eral. One can expand the 2PI vertex on the eigenmodes of
the Bethe-Salpeter equation, retaining only a finite num-
ber of eigenmodes. Each coefficient in this expansion is
bounded by a critical value at which a phase transition
occurs.

In Section 2.6, we have proposed a method to derive
the Ginzburg-Landau expansion of the thermodynamic
potential in the vicinity of the phase transition on the basis
of the flow equations in the normal phase. This is the sim-
plest way to access phases with long-range order as it does
not require to solve the full RG equations in the presence
of symmetry breaking. The knowledge of the Ginzburg-
Landau expansion of the thermodynamic potential allows
one to study the possibility of phase coexistence below the
transition temperature. This is a particularly important
issue in quasi-1D organic conductors where superconduc-
tivity and antiferromagnetism [59,60], as well as spin- and
charge-density waves [61,62], coexist in some regions of the
pressure-temperature phase diagram. Recent 1PI RG cal-
culations have indicated that antiferromagnetism and su-
perconductivity, as well as charge- and spin-density-wave
phases, lie nearby in the phase diagram of quasi-1D con-
ductors [13–16]. The 2PI RG scheme would allow to deter-
mine whether they actually coexist in the low-temperature
phase as observed experimentally [59–62].

Finally, we note that the 2PI RG scheme enables a
direct connection to the phenomenological Landau Fermi
liquid theory when the metallic state remains stable down
to low temperature. It has been shown in reference [63]
that the functional Γ [Ḡ], or rather its variation δΓ =
Γ [G] − Γ [Ḡ], can be written as a functional δΓ [δn] of
the Wigner distribution function n = {nkσ(r, τ)} which
is essentially determined by the Landau parameters. The
latter are given by the forward-scattering limit of the
2PI vertex Φ(2). (δn = n − n̄ denotes the deviation from
the equilibrium value n̄.) δΓ [δn] determines both static
and dynamic properties of the Fermi liquid. In partic-
ular, it yields the quantum Boltzmann equation satis-
fied by nkσ(r, τ). In the static case, the Wigner distribu-
tion {nkσ(r, τ)} reduces to the quasi-particle distribution
function {nkσ}, and δΓ [δn] = δE[δn] − µδN − TδS[δn]
where δN [δn] and δS[δn] are the quasi-particle number
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and entropy variations induced by a change δn in the
quasi-particle distribution. The functional δE[δn], which
gives the corresponding energy variation, is the basis of
Landau’s phenomenological Fermi liquid theory.

I acknowledge discussions with M. Tissier on the 2PI formal-
ism at an early stage of this work. I am also grateful to C.
Nickel and C. Bourbonnais for numerous discussions on the
RG approach, and to A. Katanin for a useful comment on
Ward identities [64].

Appendix A

In this appendix, we show that equations (108) cor-
rectly reproduce the one-loop equations for the 1PI ver-
tex γ(4) in Luttinger liquids. The flow equation of γ(4)

is given by equation (39). To order (γ(4))2, it reduces to
γ̇(4) = −γ(4)Π̇γ(4) + Φ̇(2) where Φ̇(2) should be evaluated
to O[(γ(4))2]. This leads to

γ̇C
t = −Bppγ

C
t

2
+ Φ̇C

t

= Bpp

(−γC
t

2
+ γC

t γ
L
ch + 2γC

t γ
L
sp − γC

s γ
L
sp

)
,

γ̇C
s = −Bppγ

C
s

2
+ Φ̇C

s

= Bpp

(−γC
s

2
+ γC

s γ
L
ch − 3γC

t γ
L
sp

)
,

γ̇P
ch = 2Bphγ

P
ch

2
+ Φ̇P

ch

= −Bpp

(
2γP

ch

2
+ γP

chγ
L
ch + 3γP

spγ
L
sp

)
,

γ̇P
sp = 2Bphγ

P
sp

2
+ Φ̇P

sp

= −Bpp

(
γP
sp

2
+ γP

chγ
L
sp + γP

spγ
L
ch − 2γP

spγ
L
sp

)
,

γ̇L
ch = Φ̇L

ch

=
1
2
Bpp

(
3
4
γC
t

2
+

1
4
γC
s

2 − γP
ch

2 − 3γP
sp

2
)
,

γ̇L
sp = Φ̇L

sp

=
1
2
Bpp

(
1
2
γC
t

2 − 1
2
γC
t γ

C
s

−2γP
chγ

P
sp + 2γP

sp

2
+ 4γL

sp

2
)
, (A.1)

where we have used Bpp = −Bph. γC, γP and γL are
defined similarly to ΦC, ΦP and ΦL (Eqs. (106)). Note
that γ(4)Π̇γ(4) vanishes in the Landau channel as it does
not produce any logarithmic term. Equations (A.1) can
be simplified by using the crossing symmetries

γ
(4)rrr̄r̄
ph,σ1σ2σ3σ4

= −γ(4)rr̄rr̄
pp,σ1σ3σ2σ4

= γ(4)rr̄r̄r
pp,σ1σ3σ4σ2

= −γ(4)rr̄r̄r
ph,σ1σ4σ3σ2

, (A.2)

which lead to

γL
ch =

3
4
γC
t +

1
4
γC
s = −1

2
γP
ch − 3

2
γP
sp,

γL
sp =

1
4
γC
t − 1

4
γC
s = −1

2
γP
ch +

1
2
γP
sp. (A.3)

From equations (A.1, A.3), we finally deduce

γ̇C
t =

1
4
Bpp

(
γC
t − γC

s

)2
,

γ̇C
s = −3

4
Bpp

(
γC
t − γC

s

)2
,

γ̇P
ch = −3

2
Bpp

(
γP
ch − γP

sp

)2
,

γ̇P
sp =

1
2
Bpp

(
γP
ch − γP

sp

)2
,

γ̇L
ch = 0,

γ̇L
sp = 4Bppγ

L
sp

2
, (A.4)

with the initial value γ(4)|Λ0 = Φ(2)|Λ0 given by
equations (112). Alternatively, using the parameteriza-
tion (112), one can rewrite equations (A.4) as two flow
equations for g1 and g2,

ġ1 = −2Bppg
2
1 ,

2ġ2 − ġ1 = 0. (A.5)

Equations (A.5) are the usual one-loop RG equations for
a 1D system [12].
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